Transforming Growth Factor- Stabilizes Elastin mRNA by a Pathway Requiring Active Smads, Protein Kinase C- , and p38
نویسندگان
چکیده
Transforming growth factors (TGFs)are multipotent in their biologic activity, regulating cell growth and differentiation as well as extracellular matrix deposition and degradation. Most of these activities involve modulation of gene transcription, but TGF1 has been shown previously to substantially increase the expression of elastin by stabilization of tropoelastin mRNA through a signaling pathway that likely involves a phosphatidylcholine-specific phospholipase C, a protein kinase C, prenylated and acylated protein(s), and one or more tyrosine kinases. However, there is a 4to 6-h lag period after the addition of TGF1 before significant stimulation of elastin expression is observed and the question of whether the Smads are involved has not been addressed. In the present work, using cultured human fetal lung fibroblasts, we show through the use of specific inhibitors and transfection of a Smad 7 construct that in addition to de novo protein synthesis and active Smads, the extended activity of protein kinase C (PKC)and the stress-activated protein kinase, p38, is required for TGF1 to achieve elastin mRNA stabilization.
منابع مشابه
Reactive Oxygen Species and p38MAPK Have a Role in the Smad2 Linker Region Phosphorylation Induced by TGF-β
Background: Transforming growth factor-β (TGF-β) in addition to the C-terminal region can phosphorylate receptor-regulated Smads (R-Smads) in their linker region. The aim of the present study was to evaluate the role of signaling mediators such as NAD(P)H oxidases (reactive oxygen species [ROS] generators), ROS, and ROS-sensitive p38 mitogen-activated protein kinase (p38MAPK) in this signaling ...
متن کاملStabilization of elastin mRNA by TGF-beta: initial characterization of signaling pathway.
The cytokine transforming growth factor-beta (TGF-beta) has multiple effects on a wide variety of cell types. These effects include modulation of growth and regulation of gene transcription. In a few instances, TGF-beta has also been shown to regulate gene expression posttranscriptionally by altering message stability, but the pathway by which this activity is executed remains largely unknown. ...
متن کاملVitamin E succinate induces NAG-1 expression in a p38 kinase-dependent mechanism.
NAG-1 (nonsteroidal anti-inflammatory drug-activated gene), a member of the transforming growth factor-beta superfamily, is involved in many cellular processes, such as inflammation, apoptosis/survival, and tumorigenesis. Vitamin E succinate (VES) is the succinate derivative of alpha-tocopherol and has antitumorigenic activity in a variety of cell culture and animal models. In the current study...
متن کاملIranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat
Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...
متن کاملInhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542.
Transforming growth factor beta1 (TGF-beta1) is a potent fibrotic factor responsible for the synthesis of extracellular matrix. TGF-beta1 acts through the TGF-beta type I and type II receptors to activate intracellular mediators, such as Smad proteins, the p38 mitogen-activated protein kinase (MAPK), and the extracellular signal-regulated kinase pathway. We expressed the kinase domain of the TG...
متن کامل